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Two-phase convex-type corner flows 
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The flow of an inviscid incompressible fluid, with imbedded identical spherical 
particles, around an arbitrary corner is treated by the method of small perturba- 
tions. Application is made to convex flows only and the approximate effects of 
separation are also considered. The assumption of arbitrary initial particle 
density k, leads to a complex system of equations, which appears to have no 
simple solution in general, and is not considered. For small k, the particle density 
distribution is governed by a first-order partial differential equation which, when 
solved by the method of characteristics, yields ordinary differential equations, 
whose solutions are simple and analytic for unseparated flow and numerical only 
when separation is considered. In  the former flow, spiral type curves partially 
encircling the plate tip, and then trailing downstream, delineate the particle-free 
zones, and it is found that the particle density increases monotonically in the 
downstream direction on all particle streamlines. In the separated flow, the most 
noteworthy effect is the disappearance of the infinite velocity a t  the origin and the 
consequent considerable reduction in the magnitude of the perturbation. 

1. Introduction 
The flows involved in the present problem comprise an incompressible fluid, 

inviscid apart from the fluid-particle interaction, imbedded with small identical 
spherical particles. The analysis is carried out for a general corner and hence 
includes the flow in a wedge-shaped channel, stagnation point flow, flow around 
convex corners and the flow around a semi-infinite flat plate. In  view of this 
large number of geometries, the attention here is devoted to convex type flows 
only, in which the separation is the most important phenomenon. To be more 
specific, the cases of a small convex corner angle and the flow around a semi- 
infinite flat plate are treated in some detail. Viscous effects are not considered, 
since even the corresponding problem for a single-phase fluid is not well under- 
stood. Concave type flows, in which the viscous effects are predominant, are left 
for a later study. 

Perturbation methods are not new in the mechanics of two-phase flows. To 
the author’s knowledge, the first application was by Rannie (1962, pp. 117-144) 
to the flow through nozzles. Michael (1968) used the method to study the flow 
past a sphere, and the present paper continues this line of investigation. 

Basically, the methodology consists of perturbing an initially steady-state 
flow, in which the particles are so small that they follow the fluid streamlines 
with negligible deviation. This initial state is well known from potential flow 
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theory. The particles are then allowed to acquire a finite relaxation time 7, 

thereby perturbing the flow. Thus, equations, which are valid for small values of 
7, are found. 

2. The assumptions and equations 
The assumptions are (1) incompressible, potential, high-speed flow, ( 2 )  fluid- 

particle interaction is according to Stokes' drag law, (3) the particle-particle 
interaction is negligible, and (4) the density of the fluid is considerably less than 
that of the particle material. 

Subject to these assumptions, the system of equations in cylindrical co- 
ordinates is 

(1)  

where u and v are the velocities of the fluid and particle, respectively, p is the 
pressure, 7 is the particle relaxation time, p is the fluid density, and Ic is the ratio 
of the particle to the fluid mass densities. 

The perturbation yields : u = u,, + u' andv = u, + v', where : u'/u,, andv'/u,, < 1 ; 
u,, is the equilibrium fluid-particle velocity, about which the perturbation is 
made, and p now assumes po +p' . The case of arbitrary initial particle density k,, 
is not difficult to analyze, but the resulting equations seem to admit only wholly 
numerical solutions. By assuming small Ic,,, the equations can be solved analytic- 
ally if no separation exists. A simple separation model yields ordinary differential 
equations which may be solved by numerical procedures. 

Following Michael, the equations for small k, are 

u' = 0 = p ' ,  (7 )  

(8) 

(u,+v').Vk = -IcV.V'. (9) 

v' = - 7(u,,. 0 )  u,, 

3. The flow without separation 
From most texts on hydrodynamics, e.g. Milne-Thomson (1968, ch. 6 ) ,  the 

velocity potential for the unperturbed flow in a corner is 

q3 = (aln) rncos ncp, 
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where r and cp are the co-ordinates, n = n/P, ,5 is the angle between the walls, 
and a is a large constant. The values of n and ,8 for various geometries are shown 
in figure 1. 

- 
/// 

_____) - 
n = l  n=$ n=J 

/?=n i? = 8n/l  P=2n  

FIGURE 1. Flow configurations. 

The unperturbed fluid-particle velocity components are then 

u T o  = - arn--l cos ncp, uqo = arn--lsin ncp. (10) 

(11) 

Substituting these quantities into (8) ,  one finds 

v’ = - T V ( $ ~ U ~ / ~ )  = &(n- i)r2n--3a, 

where a is a unit vector in the r direction. 
Thus, to the first order, the perturbed particle velocity is independent of angle 

and is a simple function of r only. For values of n greater than #, the perturbation 
increases with increasing radius, while for values less than 4, it increases with 
decreasing radius. The fact that, in the latter case, the perturbation becomes 
infinite at  the origin does not render the theory invalid since, due to the extremely 
large fluid velocities there, no particles can approach this point. Also interesting 
is that the perturbation in the particle velocity is a constant, when n = 8, i.e. 
when the wall angle p is 120’. 

Applying the divergence operator to (1  1) and then combining the result with 
(9) and (11), one finds the equation governing the particle density 

ak sinncpak 
ar r acp -(cosncp+[(n- l)rm-2)-+-- = 2[(n-l)2rn-3k, 

where [ = ar. 

p. 47).  The associated ordinary differential equations are 
Equation (12) may be solved by the method of characteristics (cf. Ince 1956, 

(13) 
dr rdcp - dk - 

cos ncp + t (n  - 1) rn--2 - sin ncp 2t(n - 1)2 rn-3k ’ 

Equating the first two terms of (13) gives 

dr (n - 1) rn-l 
-+rcotncp = -[ 
@j sinncp ’ 

(14) 

Equation (14) can be recognized as a Bernouilli type (cf. Ince 1956, p. 22) and, 
with the transformation r = xl@-n), it becomes 

ax (n-Z)(n-l) 
dcp sin ncp 
-+(2-n)xcotncp = 5 (n + 2). 
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The integrating factor for this equation is 

exp ( 2  - n) cot ncp d y  = 1 sin ncp ((2-n)/n, ( S )  
and consequently one obtains 

cp - (n - 2 )  (n - 1)  6 sin2((l/n)-l) ncp d y  = c, (15) s +n Sin(2-n)/n 

for the first characteristic surfaces. A study of (10) and (11) shows that (14) 
also defines the particle streamlines and, therefore, the latter form the charac- 
teristic base curves. In the limit 6 -+ 0, (15) reduces to the form Psinncp = C, 

which is the equation of the unperturbed streamlines. 
Since n may be a fraction or an integer, no standard integral is available for 

(15), but for certain values of n the integration is easily carried out. For example, 
when n = i, one has (d sin icp)3- 36(cp - siny) = c. (16) 

Returning to (13); equating the second and third terms shows 

dk Zg(n - 1)2 krn-2 
& =  sin ncp 

___ 

Then, substituting for r from (15) and rearranging, one finds the relation, which 
is valid along a streamline c,  

k 

The integral surface of (1  2) is then given by 

where the arbitrary function has been chosen such that k = k, = constant, when 
g-. 0. 

When n = +, (17) reduces to 

- k = (l+-(rp-sincp) 36 
Ic, 8c 

These equations indicate that k always increases along the particle streamlines 
and this would seem to violate particle conservation. The explanation lies in a 
closer examination of (15) or (16), the particle streamline equations. 

The innermost particle streamline for n = Q, found by setting c = 0 in (16), 
is given by 

r = [$jt(cp - sin cp)]+/sinZ Qcp, 

which is the equation of a spiral centred a t  the origin and trailing downstream. 
This spiral, as shown in figure 2,  delineates the single and two phase zones in the 
fluid, and becomes asymptotic to the fluid streamline 

r t  sin Qcp = c = (2n-g); 

(19) 
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far downstream and becomes more tightly wrapped for smaller particles, co- 
inciding with the plate in the limit 6 + 0. The lack of particles between the spiral 
and the plate accounts for the result of (1 7) and (1 8) which shows that k increases 
only. 

The maximum value of k in the flow occurs far downstream on this spiral, i.e. 

When 5 = 0.1, this ratio is roughly 1-23. It should be mentioned, however, that 
these values of k are of limited use, since the derivatives in (1 2) are undefined on 
the delineation lines. 

(Unsep 

Single-phase zone , , , / 

zone 

FIGURE 2. Zone delineation curves, n. = 4. - - - -, fluid streamlines, c = (in&)*. 

The curves presented for n = have been calculated from the equations of this 
section. For n = &, it is found easier to use the results of the next section on 
separation effects, by allowing the source strength to vanish. In  this manner, a 
comparison between separated and unseparated flows is obtained. 

The delineation curves for n = $ have been found by using Simpson's rule 
and (15), and are plotted in figure 3. The spirals are qualitatively the same as 
those for n = Q, but are much less separated now and, therefore, the particle-free 
zones much smaller. The particle streamlines further out from the corner show 
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a progressively smaller deviation with .$, from the unperturbed streamlines. 
Also noticeable is the much diminished size of the perturbation in general, by 
comparison with the unseparated case of n = &, as shown in figure 4. 

The particle density distribution along the (particle) streamlines of figure 3 
is computed from (17) ,  for n = Q, and plotted in figure 5. The previous observa- 

Flow - ----- 

'\ 

0.2 
0.1 
0.0 

\ 

FIGURE 3. Zone delineation curves and particle Streamlines, n = 5. 
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L--y------) - 

Unsep. flow Sep. flow 

/ H /  
5=0,0.1,0.2, 1.0 

FIGURE 4. Particle st,rcnmlines, n = 4. - - - -, fluid separation line. 
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tions regarding the monotonic increase in the downstream direction and the 
rapid diminution of the perturbation with distance from the corner are verified 
by these curves. 

1.05 / 

1.02 

1.005 c /  
1.001 
1 .o ~ 1 1 1 , , 1 1 1 1 1 1  

40 80 120 160 200 240 280 330 

To 
FIGURE 5 .  Particle density distributions. Curves: (n, 6, c, x), (n, t / c ) .  

4. The flow with separation 
Two approaches to the problem of separation seem possible; the first being the 

use of the free-streamline theory, and the second, that of combining the flow from 
a source in the wall downstream of the corner with the unseparated corner flow 
used previously. Although the former would probably give a more realistic 
picture, the theory does not lead to functions that are simple enough to be treated 
in the manner required in the present work. The unperturbed separated flow at 
the corner may be obtained in a tabular form by using the Kirchoff method, but 
considerably more numerical work is required to find the particle solutions. For 
this reason the second method is chosen. 

The addition of the source complicates the corner flow so much that a simple 
wholly analytical solution, as presented in 5 3, does not exist. The algebraic work, 
however, can be considerably reduced by the use of the conjugate co-ordinate 
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system. The particle density equation is derived in this system, solved by the 
method of characteristics, and the Runge-Kutta process used to find the particle 
streamlines and density distributions. 

The complex velocity potential for corner flow with a source of strength nz 
located on the wall at a radius ro downstream, is givenlby 

w = (c+) zn - 2 m  In (zn + r t )  

and consequently the unperturbed velocity is 

Uo(Z,X)  = uz,+izc,o = (;) P-l[& - x] 9 

where x = art/m, and x is replaced by x/ro. When (20) is multiplied by its con- 
jugate, non-dimensional groups formed and finally the gradient operator, de- 
fined by (2 / r0 )  (a/&), applied, one has 

where 6 = and 

Then, by using (20), the particle velocity becomes 

v r o / m  = i? - [EF,  (22) 

where the bar denotes the conjugate. 
The divergence of (21) ,  defined by 2/r0Re (a/&),  is 

where Re denotes the real part. The particle density equation, found by sub- 
stituting (22)  and (23 )  into (9), is then 

The integral surface of this equation is given by the intersection of the two 
characteristic surfaces formed by the two ordinary differential equations 
derivable from it by the method of characteristics. To obtain numerical solu- 
tions of (24) it is more convenient to introduce a parameter s and to write the 
two ordinary differential equations as the following three : 

(25) 1 dxlds = Re ( E  - tEF) ,  
dy/ds = Im (I!? - CEF), 

dln (k /ko) /ds  = 2x[Re (FP) .  

The system of equations (25 )  can, under certain circumstances, be solved 
reasonably easily by using the Runge-Kutta method. This is done by choosing 
a barrier to eliminate problems of multivaluedness and restricting the values of n 



Two-phase convex-type curner flows 767 

to allow the use of a standard subprogram for square roots to compute the roots 
of the complex quantities. It is found, however, that for values of n near unity 
this model provides a poor representation of corner flow separation. The reason 
is that a ‘flase’ projects out from the corner, and the wall streamline a t  the origin, 
instead of being of infinite radius as on a free streamline, turns abruptly almost 
at right angles to the direction of approach. The model seems satisfactory for 
values of n near 4, and the flow corresponding to n = 4 is chosen for evaluation 
here. 

To compute the delineation curves, the first two of equations (25 )  are first 
integrated for x = 1; the limiting case of 6 -+ 0 then yields the fluid separation 
line. These curves are all shown in figure 2. It is evident that the disappearance 
of the infinite velocity at  the origin reduces considerably the magnitude of the 
perturbation. The curves representing E = 1 are of qualitative use only, since 
this value is somewhat large. 

The complete set of equations (25 )  is then integrated downstream, from an 
upstream point on the streamline c = 1.5, for x = 2 n  = 1 and x = 104 and dif- 
ferent values of 6; the latter value of x yielding the unseparated flow. The particle 
streamlines, as shown in figure 4, indicate that, even at short distances from the 
corner, the perturbation has been reduced to an almost insignificant size by the 
separation. 

How separation will affect convex flows other than that presented here may 
be qualitatively inferred from the present results. Since the case n = Q produces 
the largest perturbation of any convex flow, and in this case the perturbation 
is considerably reduced due to the separation, it seems reasonable to assume that, 
for values of n near unity, the separation would virtually negate the effects of the 
perturbation. 

The particle density distributions along some of the streamlines of figures 3 and 
4 are shown in figure 5. No attempt is made to present the distributions along the 
delineation curves because, due to the singularity, the derivatives of k are un- 
defined there. 

5. Summary 
The assumption of arbitrary initial particle density Ic, leads to a system of 

equations that seems to have neither a simple analytical, nor a simple numerical, 
solution, and is not treated here. If one further assumes that k, is small, such 
solutions are available. 

Regardless of whether separation is considered, the solution centres around the 
particle density equation. This first-order partial differential equation can be 
solved by the method of characteristics, which yields ordinary differential equa- 
tions that may be solved numerically by the Runge-Kutta method. The charac- 
teristic base curves are formed by the particle streamlines, and the integral 
surface of the density equation is represented by the variation in particle density 
along these streamlines. In unseparated flows, these ordinary differential equa- 
tions can be solved analytically for several convex cases but, in general, at  least 
a simple numerical integration is required. 
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The separation model considered here comprises a corner flow combined with 
a source just downstream of the corner. The model is satisfactory for small 
values of n, but requires the Runge-Kutta integration procedure. 

Convex-type flows always yield particle-free zones. In  the unseparated flows, 
these zones are delineated by spiral-shaped curves, which emanate from the 
origin at  the upstream side, partially encircle it, and then trail downstream. The 
size of the zones depends largely on the particle relaxation time 7. In  separated 
flows, the singularity in the fluid velocity a t  the origin disappears and con- 
sequently the particle spirals become very much reduced in size. 

Of all convex flows, the case of cn = 4 is the most strongly affected by the 
perturbation. Because of the considerable reduction, in this case, in the size of 
the perturbation, by the separation, it seems reasonable to infer that the effects 
of separation would practically negate the perturbation, for values of n near 
unity, i.e. for small convex angles. 

The prticle density is found to increase monotonically in the downstream 
direction on all particle streamlines; it increases rapidly in the neighbourhood 
of the delineation curves and maximizes on them far downstream. With in- 
creasing radius from the corner, the density slowly decreases to k,. Particle 
densities resulting from the computations in the neighbourhood of the delinea- 
tion lines are of limited value, since the singularity across these lines implies 
undefined density derivatives. 

The author wishes to thank Professors Wuest and Grohne for some useful 
conversations in the course of this work. 
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